

SIM CONTRIBUTION TO SUPPORT METROLOGY FOR INNOVATION AND SUSTAINABLE DEVELOPMENT IN THE AMERICAS

Héctor Laiz SIM President Gerente de Metrología, Calidad y Ambiente - INTI

A representative, transparent, competent, and worldwide-recognized regional metrology organization.

Mission

To promote and support an integrated measurement infrastructure in the Americas which enables each member national measurement institutes to stimulate innovation, competitiveness, trade, consumer safety and sustainable development by effectively participating in the international metrology community.

A representative, transparent, competent, and worldwide-recognized regional metrology organization.

Mission

To promote and support an integrated measurement infrastructure in the Americas which enables each member national measurement institutes to stimulate innovation, competitiveness, trade, consumer safety and sustainable development by effectively participating in the international metrology community.

Strategic Objectives

- I. Development of NMIs in the SIM Region
- II. Building a Strong SIM Organization
- III. Fulfill Regional Metrology Organization Obligations under the CIPM MRA

Strategic Objectives

I. Development of NMIs in the SIM Region

- II. Building a Strong SIM Organization
- III. Fulfill Regional Metrology Organization Obligations under the CIPM MRA

Strategic Objective: Development of NMIs in the SIM Region

I.1 Develop Metrology for Innovation

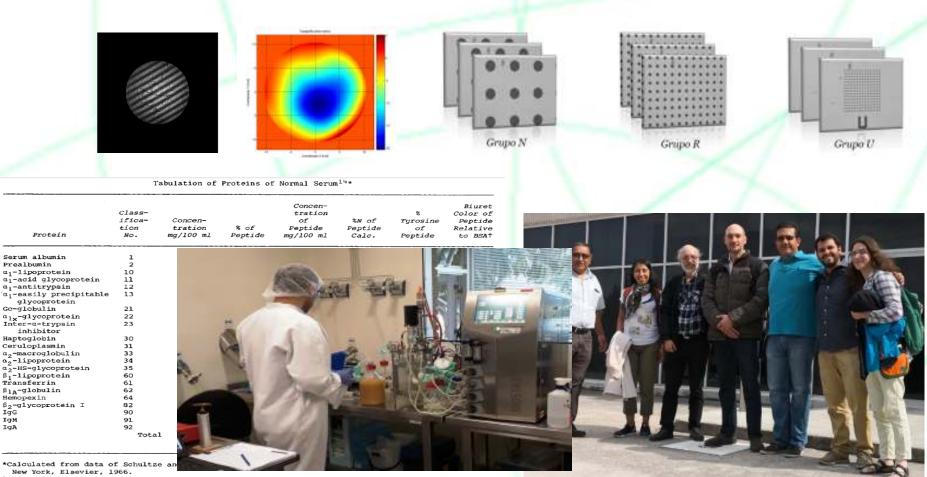
ACTION I.1.1: The SIM Council in cooperation with the SIM Technical Committee will develop and implement a 3-year plan to support the development of the metrology needed for emerging technologies (i.e., advanced manufacturing, nanotechnology and biotechnology). This plan will also promote the growth of cooperation for research in metrology among SIM NMIs.

Resources: IADB Project

Strategic Objective: Development of NMIs in the SIM Region

I.2 Develop Metrology for a Sustainable Development

ACTION I.2.1: The SIM Council in cooperation with the SIM Technical Committee will develop and implement a 3-year plan to support the development of the metrology needed for <u>Renewable Energies and Energy</u> <u>Efficiency.</u>


Resources: PTB Project. OAS-NIST Project

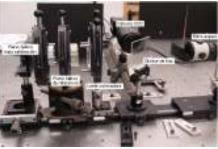
ACTION I.2.3: The SIM Council in cooperation with the SIM Technical Committee will develop and implement a 3-year plan to support the development of the metrology needed for <u>Climate Science</u>, <u>Biodiversity and</u> <u>the Green Economy</u>.

Resources: PTB Project. OAS-NIST Project

Project -> Strengthening National Metrology Institutes in the hemisphere, in support of emerging technologies

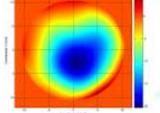
+Bovine serum albumin. ()The values in the brackets were indirectly calculated from the stated amounts of nonpeptide constituents.

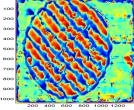
IĝG IgM IgA

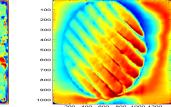

IMPROVEMENT AND UPDATING OF INTERFEROMETRIC SYSTEMS FOR TRACEABLE DIMENSIONAL NANOMETROLOGY AT SIM

This project focuses on cross validation of flatness calibration /measurement systems at two of SIM-NMIs (INMETRO and INTI), who already have a Fizeau interferometer for flatness-deviation calibration of optical flats, extending its traceability/metrological control to others SIM-NMIs, to develop capabilities in nanometrology.

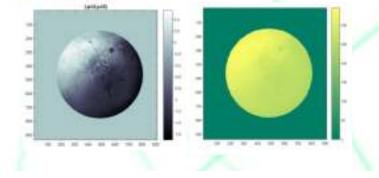
INMETRO and INTI will automate optical flatness measurements with the help of CENAM (México), LACOMET (Costa Rica), and LATU (Uruguay) who will also receive the transfer of the technology and knowledge.


A SCHOOL OF ALIGNMENT AND TUNING WAS CARRIED OUT WITH THE INTERFEROMETER OF INTI.




IMPROVEMENT AND UPDATING OF INTERFEROMETRIC SYSTEMS FOR TRACEABLE DIMENSIONAL NANOMETROLOGY AT SIM

ANALYSIS OF UNCERTAINTY CONTRIBUTIONS FOR THOSE AUTOMATED SYSTEMS



In order to evaluate the topography of the optical planes, the FFT METHOD ANALISYS method was evaluated and also the BIDIMENSIONAL EMPIRICAL MODE DECOMPOSITION (BEMD) & HILBERT SPECTRAL ANALYSIS (HSA). Both methods were finally rejected, and outweighed by the Takeda modified regularization method by CENAM.

• TO PROVIDE TRACEABILITY TO THE OTHER SIM-NMIS IN THE NANOSCALE

WE ARE DEVELOPING PHASE STEPPING ALGORITHM FOR THE ABSOLUTE MEASUREMENT OF FLATNESS.

IMPROVEMENT AND UPDATING OF INTERFEROMETRIC SYSTEMS FOR TRACEABLE DIMENSIONAL NANOMETROLOGY AT SIM

• TO LAUNCH A STABLE BASIS FOR NEW COMPARISONS AT SIM IN FLATNESS DEVIATION

It would be expected that the designs and improvements reached by this project will be transferred to all the SIMN MIs, for instance, CENAM, LACOMET and LATU, in order to replicate this type of system at their facilities.

LACOMET, STARTED THE DESIGN OF A HOME MADE FIZEAU INTERFEROMETER BASED ON INTI FACILITIES.

LARGE-SCALE DIMENSIONAL METROLOGY

Evaluate the performance of large-scale measurement instruments such as laser trackers, total stations or photogrammetric systems to assure the measurements of large objects

OBJECTIVES:

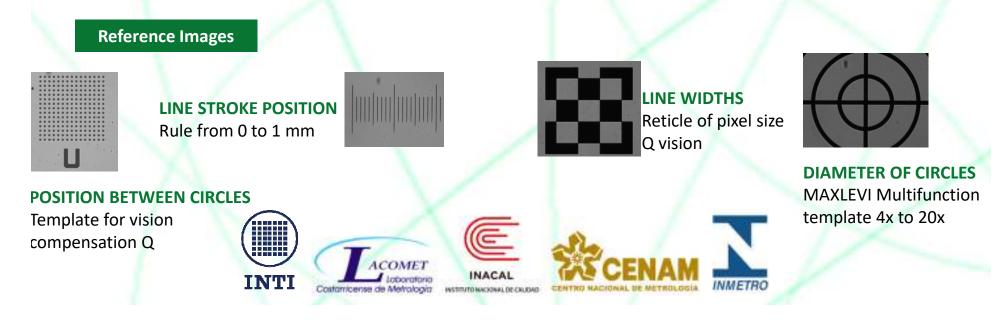
- Verification and evaluation of the instrument in accordance with existing written standards.
- Development of calibration standards (artifacts).
- Development of calibration and verification methods.
- Evaluation of measurement uncertainty.
- Characterizations of influencing variables such as the refractive index of air.
- Evaluation and comparison of the different instruments and technologies (total stations, laser trackers, photogrammetry, etc.)

LARGE-SCALE DIMENSIONAL METROLOGY

• NPL (UK) provided the project with a script developed in Matlab that allows the evaluation of geometric errors of laser trackers with beam of light mounted on the head.

• CENAM performed the measurement of nests of points and sent the results of these measurements to the other laboratories to make these measurements.

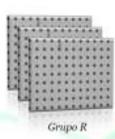
In the next meeting we will analyze those results. Those points will be loaded into the software provided by NPL to find the geometry errors of the laser trackers.


Janet (Perú), Octavio (México), Luiz (Brasil), Diego (Argentina) y Leonardo (Costa Rica)

CALIBRATION OF STANDARD REFERENCE MATERIAL FOR USE IN CALIBRATING THE MAGNIFICATION OR SCALE OF OPTICAL MICROSCOPY AND SCANNING ELECTRON MICROSCOPY

The implementation of algorithms for image processing for metrology purposes. This will enable our instruments to operate in a semi-automatic way to determine different geometric parameters such as the center of a circle, the intersection of a line with a plane, the parameters defining a cone, etc.

Aim: better tools to measure in the nano and micro range. The main challenge is to define algorithms for automatic image segmentation and image analysis procedures. Besides, it is also important to research its influences and uncertainty on the measurements results.


CALIBRATION OF STANDARD REFERENCE MATERIAL FOR USE IN CALIBRATING THE MAGNIFICATION OR SCALE OF OPTICAL MICROSCOPY AND SCANNING ELECTRON MICROSCOPY

Experimentation/Circules position (Protocol)

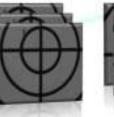
- Determine the position of four circles with respect to a reference circle (central circle) in the three images.
- Determine radius of the 5 circles in the three images.
- Calculate average and total standard deviation.

(*) APPROVED MEASUREMENT PROTOCOLS, MEASUREMENTS IN PROCESS.

	0.1.4	1 1	KU1
	0		0
		0	0
-	0		

Grupo U

IMAGEN	CÍRCULO	COORD (PIXE		RAI	010	COORDEN	NADA μM	DISTANCIA EUCLIDIANA
		х	Y	pixeles	μm	х	Y	μm
	1	1233.3	1038.7	145.4	13.40	113.70	95.76	
1	2	1235.3	311.0	145.9	13.45	113.88	28.67	67.09
N_0001	3	1231.8	1766.4	145.7	13.44	113.56	162.85	67.09
z	4	506.2	1037.4	145.4	13.41	46.66	95.63	67.04
	5	1960.9	1040.0	145.9	13.45	180.78	95.87	67.08
	1	1233.3	1039.7	147.7	13.62	113.70	95.84	
5	2	1237.7	310.7	144.8	13.35	114.10	28.65	67.20
N_0002	3	1231.7	1767.5	147.9	13.64	113.55	162.94	67.10
z	4	506.1	1038.3	147.8	13.62	46.65	95.72	67.05
	5	1966.7	1035.9	147.7	13.61	181.31	95.49	67.61
	1	1233.2	1038.6	147.5	13.60	113.69	95.74	
33	2	1234.8	311.0	148.0	13.64	113.83	28.67	67.07
N_0003	3	1231.7	1766.1	147.8	13.62	113.55	162.82	67.07
z	4	506.0	1037.3	147.7	13.62	46.64	95.63	67.04
	5	1960.7	1039.8	147.8	13.63	180.76	95.86	67.07


CALIBRATION OF STANDARD REFERENCE MATERIAL FOR USE IN CALIBRATING THE MAGNIFICATION OR SCALE OF OPTICAL MICROSCOPY AND SCANNING ELECTRON MICROSCOPY

Experimentation/Circules position (Protocol)

• Circle A positions within the field of view of the camera

central

superior

inferior

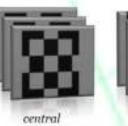
Método y parámetros

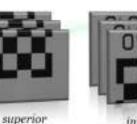
derecha

izquierda

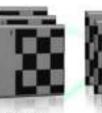
Nº de puntos con los que se determine el círculo

^(*) APPROVED MEASUREMENT PROTOCOLS, MEASUREMENTS IN PROCESS.

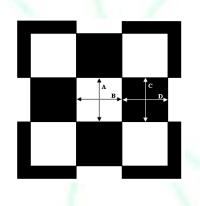

Método	zerocross	sigma Tamaño	5 5 x 5	\square	1	
Contraction of the	Superior	Radio	Centro en	1 pixeles	No.	Diámetro
Imagen	Superior	μm	x	y	puntos	μm
CEN_R0026	1	52.76	1935.36	1054.38	2740	105.52
CEN_R0042	2	52.77	1947.48	1072.54	2755	105.54
CEN_Roo43	3	52.78	1926.15	1093.28	2734	105.56
	Promedio	52.77	1936.33	1073.40		105.54
	D. estándar	0.009				0.018



CALIBRATION OF STANDARD REFERENCE MATERIAL FOR USE IN CALIBRATING THE MAGNIFICATION OR SCALE OF OPTICAL MICROSCOPY AND SCANNING ELECTRON MICROSCOPY


Experimentation/Circules position (Protocol)

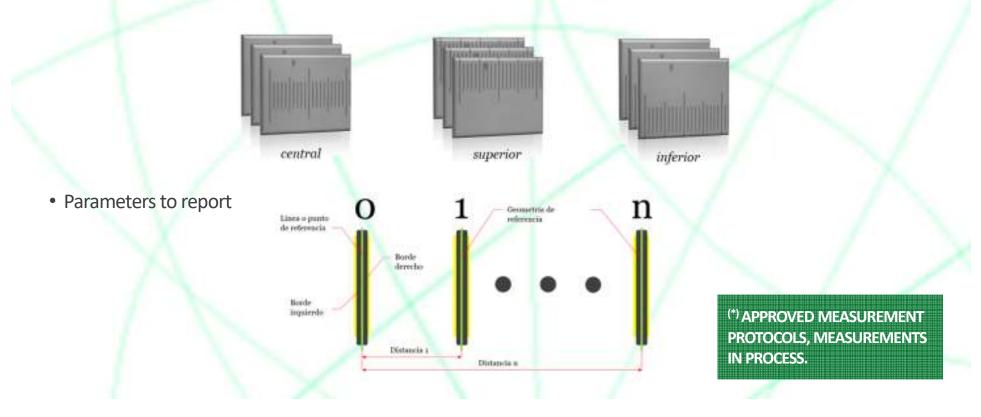
• Positions of light and dark squares within the field of view of the camera



VALOR NOMINAL		VALOR MED	IDO EN µM	
μm	А	В	C	D
100	100.0	100.0	100.0	100.0
40	40.0	40.0	39.9	40.0
10	10.0	10.1	10.0	10.0

VALOR NOMINAL	D	ESVIACIÓN	ESTÁNDAR µ	M
μm	Α	В	С	D
100	100.0	100.0	100.0	100.0
40	40.0	40.0	39.9	40.0
10	10.0	10.1	10.0	10.0

(*) APPROVED MEASUREMENT PROTOCOLS, MEASUREMENTS IN PROCESS.



CALIBRATION OF STANDARD REFERENCE MATERIAL FOR USE IN CALIBRATING THE MAGNIFICATION OR SCALE OF OPTICAL MICROSCOPY AND SCANNING ELECTRON MICROSCOPY

Experimentation/Circules position (Protocol)

• Positions of line strokes within the field of view of the camera

Development of a Protein Certificate Reference Material (CRM), Bovine Serum Albumin

Aims

Set up measurement traceability for total protein quantifications.

Objectives

Develop the BSA Certified Reference Material.

•Introduce the LAC region to protein CRM production and certification according to ISO standards 30-35.

Why BSA is important?

Calcui New 1 Bovine	Tabulation of Proteins of			
Prealbumin 2 32 97.7 a ₁ -lipoprotein 10 320 92.8 a ₁ -acid glycoprotein 11 87 54.9 a ₁ -acid glycoprotein 12 355 73.3 a ₁ -easily precipitable 13 10 80.7 glycoprotein 6c-globulin 21 58 90.2 Gc-globulin 21 58 90.2 (90.9) inhibitor 22 25 (77.3) Inter-a-trypsin 23 20 (90.9) inhibitor 30 110 82.0 Ceruloplasmin 31 45 84.9 a ₂ -macroglobulin 33 300 84.8 a ₂ -lipoprotein 35 50 79.9 β ₁ -lipoprotein 60 360 (19.2) Transferrin 61 260 95.2 β ₁ -globulin 62 35 96 Hemopexin 64 90 70.5 gA 90 1200 97.7 gA 91 75 86.0	ifica- Concen- tion tration % of	tration	ifica- tion	Protein
a ₁ -lipoprotein 10 320 92.8 a ₁ -acid glycoprotein 11 87 54.9 a ₁ -acid glycoprotein 12 355 73.3 a ₁ -easily precipitable 13 10 80.7 glycoprotein 22 25 (77.3) Gc-globulin 21 58 90.2 a _{1x} -glycoprotein 22 25 (77.3) Inter-a-trypsin 23 20 (90.9) inhibitor 14 45 84.9 a ₂ -macroglobulin 33 300 84.8 a ₂ -lipoprotein 35 50 79.9 f ₁ -lipoprotein 35 50 79.9 f ₁ -lipoprotein 60 360 (19.2) Transferrin 61 260 95.2 β _{1x} -globulin 62 35 96 Hemopexin 64 90 70.5 g ₂ -glycoprotein I 82.4 90 1200 97.7 gM 91 75 86.0 100.5 100.5 gA 90	1 4000 99.0	4000	1	Serum albumin
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 32 97.7	32	2	Prealbumin
a_1 -acid glycoprotein 11 87 54.9 a_1 -antitrypsin 12 355 73.3 a_1 -easily precipitable 13 10 80.7 glycoprotein 22 25 (77.3) Gc-globulin 21 58 90.2 a_{1_x} -glycoprotein 22 25 (77.3) Inter-a-trypsin 23 20 (90.9) inhibitor 10 82.0 Haptoglobin 30 110 82.0 Ceruloplasmin 31 45 84.9 a_2 -macroglobulin 33 300 84.8 a_2 -HS-glycoprotein 35 50 79.9 β_1 -lipoprotein 60 360 (19.2) Transferrin 61 260 95.2 β_{1A} -globulin 62 35 96 Hemopexin 64 90 70.5 β_2 -glycoprotein I 88.4 90 1200 gA 90 1200 97.7 gA 91 75 86.0 gA <td></td> <td></td> <td>10</td> <td>a,-lipoprotein</td>			10	a,-lipoprotein
a_1 -antitrypsin 12 355 73.3 a_1 -easily precipitable 13 10 80.7 $glycoprotein$ 21 58 90.2 a_{1_x} -glycoprotein 22 25 (77.3) Inter-a-trypsin 23 20 (90.9) inhibitor 30 110 82.0 Haptoglobin 30 110 82.0 Ceruloplasmin 31 45 84.9 a_2 -macroglobulin 33 300 84.8 a_2 -HS-glycoprotein 34 190 (7.3) a_2 -HS-glycoprotein 35 50 79.9 β_1 -lipoprotein 60 360 (19.2) Transferrin 61 260 95.2 β_1_2 -globulin 62 35 96 Hemopexin 64 90 70.5 β_2 -glycoprotein I 88.4 90 1200 97.7 gA 91 75 86.0 10.4 10.4 gA 91 75 86.0 10.4 10.4			11	
a ₁ -easily precipitable 13 10 80.7 glycoprotein 21 58 90.2 a _{1x} -glycoprotein 22 25 (77.3) Inter-a-trypsin 23 20 (90.9) inhibitor 30 110 82.0 Ceruloplasmin 31 45 84.9 a ₂ -macroglobulin 33 300 84.8 a ₂ -lipoprotein 34 190 (7.3) a ₂ -HS-glycoprotein 35 50 79.9 β ₁ -lipoprotein 60 360 (19.2) Transferrin 61 260 95.2 β _{1A} -globulin 62 35 96 Hemopexin 64 90 70.5 β ₂ -glycoprotein I 82 23 76.3 gA 90 1200 97.7 gM 91 75 86.0 gA 91 75 86.0 gA 91 75 86.0 gA 91 75 86.0 gA 93 94		355		
Gc-globulin 21 58 90.2 α _{1x} -glycoprotein 22 25 (77.3) Inter-α-trypsin 23 20 (90.9) inhibitor 30 110 82.0 Haptoglobin 30 110 82.0 Ceruloplasmin 31 45 84.9 α ₂ -macroglobulin 33 300 84.8 α ₂ -HS-glycoprotein 35 50 79.9 β ₁ -lipoprotein 60 360 (19.2) Transferrin 61 260 95.2 β ₁ -globulin 62 35 96 Hemopexin 62 35 96 Hemopexin 62 35 96 ga 90 1200 97.7 gM 91 75 86.0 gA 91 75 86.0 mosite avera ins, Molecula ins, Molecula				a1-easily precipitable
Inter-α-trypsin inhibitor 23 20 (90.9) inhibitor 30 110 82.0 Ceruloplasmin 31 45 84.9 a2-macroglobulin 33 300 84.8 a2-lipoprotein 34 190 (7.3) a2-HS-glycoprotein 35 50 79.9 β1-lipoprotein 60 360 (19.2) Transferrin 61 260 95.2 β1A-globulin 62 35 96 Hemopexin 64 90 70.5 β2-glycoprotein I 82 23 76.3 7G 90 1200 97.7 gA 91 75 86.0 gA 91 75 86.0 Galcu New 88.4 mposite avera New Boving ms, Molecula Molecula	21 58 90.2	58	21	Gc-globulin
Inter-α-trypsin 23 20 (90.9) inhibitor 30 110 82.0 Ceruloplasmin 31 45 84.9 a2-macroglobulin 33 300 84.8 a2-lipoprotein 34 190 (7.3) a2-HS-glycoprotein 35 50 79.9 β1-lipoprotein 60 360 (19.2) Transferrin 61 260 95.2 β1A-globulin 62 35 96 Hemopexin 64 90 70.5 β2-glycoprotein I 82 23 76.3 7G 90 1200 97.7 gA 91 75 86.0 gA 91 75 86.0 gA 91 75 86.0 gA 91 75 86.0 mosite avera ins, Molecula ins, Molecula	22 25 (77.3)	25	22	1,-glycoprotein
Ceruloplasmin 31 45 84.9 a2-macroglobulin 33 300 84.8 a2-lipoprotein 34 190 (7.3) a2-HS-glycoprotein 35 50 79.9 β1-lipoprotein 60 366 (19.2) transferrin 61 260 95.2 β1A-globulin 62 35 96 Hemopexin 64 90 70.5 β2-glycoprotein I 82 23 76.3 gG 90 1200 97.7 gM 91 75 86.0 gA 91 75 86.0 calcu New 88.4 Mostite avera New Boving 100 100 97.7		20	23	Inter-a-trypsin
α2-macroglobulin 33 300 84.8 α2-lipoprotein 34 190 (7.3) α2-HS-glycoprotein 35 50 79.9 β1-lipoprotein 60 360 (19.2) Transferrin 61 260 95.2 β1A-globulin 62 35 96 Hemopexin 64 90 70.5 β2-glycoprotein I 82 23 76.3 7G 90 1200 97.7 3M 91 75 86.0 gA 91 75 80.0 gA 91 75 80.0 gA 97 88.4 90 90 gA 98 98 99 90 gA 98 99 90 90 90 gA 99 90 90 90 <td>30 110 82.0</td> <td>110</td> <td>30</td> <td>Haptoglobin</td>	30 110 82.0	110	30	Haptoglobin
a_2^- -lipoprotein 34 190 (7.3) a_2^- -HS-glycoprotein 35 50 79.9 β_1^- lipoprotein 60 360 (19.2) Transferrin 61 260 95.2 β_1_A -globulin 62 35 96 Hemopexin 64 90 70.5 β_2 -glycoprotein I 82 23 76.3 'JG 90 1200 97.7 JM 91 75 86.0 gA 92 100 97.7 JM 91 75 86.0 gA 91 75 86.0 gA 91 75 86.0 wew Boving Ins, Molecula Molecula	31 45 84.9	45	31	Ceruloplasmin
$a_2^-HS-glycoprotein$ 35 50 79.9 $\beta_1^-lipoprotein$ 60 360 (19.2) Transferrin 61 260 95.2 $\beta_1_a^-globulin$ 62 35 96 Hemopexin 64 90 70.5 $\beta_2^-glycoprotein I$ 82 23 76.3 gG 90 1200 97.7 gM 91 75 86.0 gA 91 75 86.0 gA 91 75 88.4 Description 91 75 80.0 gA 91 75 80.0 gA 91 75 80.0 gA 91 75 80.0 gA 91 91 90.0 GA 90 90.0 90.0 90.0 gA 90.0 90.0 90.0 90.0 gA 90.0 90.0 90.0 90.0 90.0 gA 90.0 90.0 90.0 90.0 90.0	33 300 84.8	300	33	2,-macroglobulin
β ₁ -lipoprotein 60 360 (19.2) Transferrin 61 260 95.2 β _{1A} -globulin 62 35 96 Hemopexin 64 90 70.5 β ₂ -glycoprotein I 82 23 76.3 JG 90 1200 97.7 JM 91 75 86.0 gA 90 1200 97.7 JM 91 75 88.4 NgA 91 75 80.0 gA 90 100 100 Galar 91 75 80.0 gA 91 75 80.0 gA 90 100 100 Mostite avera 100 100 100 New Boving 100 100 100	34 190 (7.3)	190	34	2-lipoprotein
Transferrin 61 260 95.2 β _{1A} -globulin 62 35 96 Hemopexin 64 90 70.5 β ₂ -glycoprotein I 82 23 76.3 jG 90 1200 97.7 jM 91 75 86.0 gA 92 38.4 Calcu nposite avera ins, Molecula	35 50 79.9	50	35	2-HS-glycoprotein
β _{1A} -globulin 62 35 96 Hemopexin 64 90 70.5 β ₂ -glycoprotein I 82 23 76.3 "gG 90 1200 97.7 gM 91 75 86.0 gA "mosite avera		360	60	
Hemopexin 64 90 70.5 β ₂ -glycoprotein I 82 23 76.3 "JG 90 1200 97.7 gA 91 75 86.0 gA 91 75 86.4 Calcu: New Bovint Ins, Molecula	61 260 95.2	260	61	Fransferrin
β2-glycoprotein I 82 23 76.3 JG 90 1200 97.7 JM 91 75 86.0 gA 90 1200 97.7 JM 91 75 86.0 gA 90 1200 97.7 JM 91 75 86.0 gA 90 100 97.7 Calcu New Boving 90 100	62 35 96	35	62	β _{la} -globulin
gG 90 1200 97.7 gM 91 75 86.0 gA 91 75 88.4 Calcuine New New New Boving Solution Solution Solution	64 90 70.5	90	64	Hemopexin
PM PA PA PA PA PA PA PA PA PA PA	82 23 76.3	23	82	β ₂ -glycoprotein Ι
gA Calcu New Bovine	90 1200 97.7	1200	90	gG
Calcu New Bovint	91 75 86.0	75	91	ЭM
Calcui New Boving	88.4			gA
Calcui New Boving	nposite avera	a,	0	
Bovine	ans, Molecula	23		
)The y calculated	ly calculated			

Images: Word Protein Data Bank, http://www.rcsb.org/pdb/explore/explore.do?structureId=5IFO

Production: Scale up: By INTI

Analytic:

- •Homogeneity study: INTI
- •Stability study: CENAM •Assignment of Value: INMETRO and CENAM

Impact of the Project

•The proposal is particularly interesting because it develops capabilities in LAC NMIs in this very sensitive area Bio-metrology.

• the BSA CRM production, enables each country to develop other standards to satisfy the needs of different sectors.

• This Project also seeks to create an regional working group in order to develop different protein CRMs, and *Strengthening National Metrology Institutes in Bio-metrology*.

•This CRM will help clinic, scientific labs and industry to improve their measurements.

Networking

• Workshop, "Protein CRM and Bio-metrology", 27- 29 de June de 2017, Río de Janeiro, Brazil.

• project RG-T2682 IDB, BSA reference material.

• Application for second step production further purification and lyophilized BSA CRM development.

 Development of a new proposal for "foot and mouth disease" DNA reference Material. Fast quantification and detection

Quality Infrastructure for Biodiversity and Climate Protection

Sun

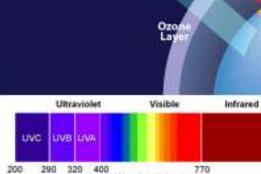
UV RADIATION

AIM: Realization of the spectral irradiace scale in the UV range

STATE :

- Subproject members are working with the equipment characterization,
- Virtual meetings carried out to adjust activities in the action plan

NEXT STEPS:


- Intercomparison workshop CENAM, INTI, INMETRO
- Training at INTI to IBMETRO & INACAL, date tbc

Wavelength (nm)

QUALITY ASSURANCE OF GRAINS (QUINOA)

STATE :

- Samples of the Reference Material were received by each country
- Protocols validation finalized June-July 2018
- Intercomparison carried out

- Analysis of the Intercomparison results
- Characterization measurements
- Meeting in Ecuador (October 2018)
- Definition of way forward with saponine test method.

VEHICLE EMISSIONS

AIM: provide traceability to gas measurements (Propane, CO and CO2) from emission of vehicle exhaust

Participants

STATE:

- Cylinder purchase was concluded satisfactory and received by INMETRO
- Advanced Training on Gravimetric Development and Analysis of Certified Reference Materials in INMETRO for persons from INEN, LATU and INM
- Preparation of the Reference Materials by INMETRO and participants done

NEXT STEPS:

Shipment of the cylinders

GHG METROLOGY

- Subcoordinator & submitting organization: Jorge Koelliker, CENAM México
- Implementing partners: INTI Argentina, INMETRO Brazil, LATU Uruguay, IBMETRO Bolivia, INACAL Peru, UCR Costa Rica.

WORKPACKAGE 1

- Development of capabilities in CENAM & INMETRO to Support Atmospheric Measurement Research Community in CO2 measurements
- CRMs available in CENAM and INMETRO
- Internship form a person from LACOMET in CENAM to improve methods

WORKPAKAGE 2

- Identification of scope successfully finished.
- Gas mixtures purchased and arrived at part of the NMIs

- Training workshop in CENAM for method validation and capabilities development (Oct)
- SIM comparison planning

BIODIVERSITY MONITORING

GOAL: To ensure metrological traceability in chlorophyll, phosphorus and dissolved oxygen for the development of CRM and the calibrations of sensors

STATE:

- Training in measurement of dissolved oxygen DO and phosphorus - P (Jun 17)
- Training in measurement of chlorophyll A ChlA (Jul 18)
- Methods for analysis of DO and P Implemented in majority of NMIs

- Implementation of method for ChIA (Jun 19)
- Acquire reference materials and develop inter-comparisons to validate methods (in process, to be concluded Oct 18)
- Perform intercomparisons of the methods among the NMIs (Jun 19)
- Produce reference material in NMIs (Oct 19)

BIOGAS

AIM: traceability for calorific value of biogas

STATE OF THE ART:

- Biogas PRM purchase in progress, arrived at INMETRO, the others are pending.
- Biogas training at VSL Holanda (April / 2018) for CENAM and INMETRO

- Receive the Biogas CRM at CENAM, INTI and INMETRO
- Biogas trainning at INMETRO for INTI participant
- Biogas trainning at IBMETRO by CENAM

BIODEGRADABILITY

GOAL: to measure the degree of biodegradability of organic chemical substances for industrial and domestic use (detergents and lubricants)

STATE OF THE ART:

- First regional meeting and specific training was held in Costa Rica (06/2018)
- The design of the interlaboratory comparison test was discussed and modified.
- The uncertainty analysis for biodegradability test was included in the action plan, and the possibility of drafting a scientific publication is being considered.

- Second Biodegradability training March 2019.
- An on-line course for uncertainty analysis, regarding basic and applied concepts will take place between September 2018 and March 2019.

METROLOGY FOR METEOROLOGY

- Subcoordinator & submitting organization: Javier Garcia Skabar, INTI Argentina
- Implementing partners: Metrology and Meteorology Institutes from Argentina, Brazil, Costa Rica, El Salvador, Mexico, Panama, Peru, Uruguay

STATE OF THE ART:

- Training in metrology fundamentals for meteorologists. Panamá. Jun 2018.

- Internships of meteorologists in the metrology institutes (national level)
- Training in air velocity measurement. Nov. 2018
- Preparation of a technical protocol for AWS Calibration
- Preparation of a International intercomparison of AWS

MERCURY

Goal:

To develop measurement capabilities to measure mercury in fish

STATE OF THE ART:

- Survey to know the capacities of the participating institutions and define the interest in the methods for harmonization.
- Collection, preparation and measurement of samples for preliminary evaluation of mercury contents.

NEXT STEPS:

- Workshop: "Definition and harmonization of measurement methods" Bogotá. Sep. 2018.
- Workshop: "Training in classical techniques for measuring elements in fish." Querétaro. Nov. 2018.

Participants

INACAL Instituto Nacra de Calidad

Mentoring

Promoting Innovation in the Green Economy by including Quality Infrastructure In Latin America and the Caribbean

PILOT 2: STRENGTHENING QUALITY IN THE E-WASTE VALUE CHAIN

OBJECTIVE:

Strengthen the institutions of the QI, as a support to a better management of electrical and electronic equipment waste (RAEE), in the participating countries.

PARTICIPANTS:

SNC-OHA, Honduras; SNC-INEN, Ecuador; INTI, Argentina; INMETRO, Brasil; EMA, Mexico.

TIMEFRAME:

July 2017 – July 2019

IMPLEMENTED ACTIVITIES:

- Analysis of the general situation of the e-waste chain in the 5 countries, for prioritized products analysis matrix, virtual meetings, Feb 18.
- Training in ISO Guide IWA 19, Tegucigalpa, Honduras, Mar 18.
- Presentation of CALIDENA methodology, Tegucigalpa, Honduras, Mar 18.

- E-Waste workshop, training auditors ISO Guide IWA 19, Honduras, Nov 18
- E-Waste CALIDENA exercise, Quito, Ecuador, nov-dec 18
- Calidena Action Plan follow-up in EC, jan 19

PILOT 3: PRODUCT CATEGORY RULES

OBJECTIVE:

Develop the capability of Quality Infrastructure (QI) organizations to offer QI services related to PCRs development according to ISO/TS 14027:2017 in selected LAC countries.

PARTICIPANTS:

ECA (Costa Rica), INTI (Argentina), INMETRO (BRAZIL), ICONTEC (Colombia), TTBS (Trinidad & Tobago)

IMPLEMENTED ACTIVITIES:

- Kick-off workshop on Water Footprint and Quality Infrastructure in November 2017
- Online coaching
- Implementation of action plans of each country
- Capacity building , participation in congresses and related workshops
- Development and technical review of documents and inputs

- Elaborate procedures for PCRs developmet
- PCRs elaboration for specific products
- Diffusion activities of the elaborated products
- Systematization of experiences
- Closing workshop in 2019 (CILCA Costa Rica)

PILOT 5: COLOCATION STUDIES FOR COST-EFFECTIVE AIR MONITORING SENSOR SYSTEMS

OBJECTIVE:

Verify the measurement reliability of cost-effective air monitoring sensors in Latin American and Caribbean Context

PARTICIPANTS:

Argentina (INTI and APrA Buenos Aires, Red Argentina de Monitoreo del Aire) and Costa Rica (Univ. Nacional, USAC and LACOMET) in cooperation with UN Environment.

TIMEFRAME:

August 2017 - July 2019

IMPLEMENTED ACTIVITIES:

- Presentation and Training in Buenos Aires (May 2018)
- Location of sensor in Buenos Aires City

- Location of sensors in Costa Rica and Argentine cities
- Co-location study comparison of measurement capabilities of cost-effective sensors with conventional monitoring systems
- Systematization of case studies
- Workshop with UN Environment, industry, users and NMIs to share experience

PILOT 6: PROFICIENCY TEST FOR AIR MONITORING NETWORKS

OBJECTIVE:

Improve the measurement capabilities of air monitoring systems in Latin American and Caribbean Cities.

PARTICIPANTS:

Argentina (INTI, APrA Buenos Aires, Red Nacional de Monitoreo del Aire), Brazil (INEA Rio de Janeiro and INMETRO), Costa Rica (Univ. Nacional, USAC and LACOMET), Guatemala (INSIVUMEH), Mexico (Univ. Queretaro y CENAM), Trinidad and Tobago (EMA and TTBS), Paraguay (NMI).

TIMEFRAME:

August 2017 - July 2019

IMPLEMENTED ACTIVITIES:

• Preparatory workshop in Buenos Aires (May 2018)

- Proficiency test in CO
- Follow up workshop and training in measurement uncertainties
- Systematization of case studies

Summary and Outlook

- SIM is supporting metrology for innovation and sustainable development in the Americas building an associative network with its NMIs for working together in common projects
- Good support of funding agencies and partners (IADB, PTB, OAS, NIST)
- New project to develop the metrology needed for the digital economy

Obrigado Merci Thank you Gracias